| [1] |
ZHANG X F, HONG Y, SU J F, et al. Examining the need for participation-oriented designs of crowdsourcing plat- forms:a comparison of contributors and potential contributors[J]. IEEE transactions on engineering management, 2024,71:11479-11493.
|
| [2] |
张雪峰, 操雅琴, 丁一. 众包模式下基于参与者胜任度和接受度的任务推送模型[J]. 管理科学, 2019(1):66-79.
|
| [3] |
HU S Y, XU D. Identifying high quality ideas in the online context:evidence from a meta-analysis[J]. European jour- nal of innovation management, 2023(3):707-729.
|
| [4] |
CHRISTENSEN K, SCHOLDERER J, HERSLETH S A, et al. How good are ideas identified by an automatic idea de- tection system?[J]. Creativity and innovation management, 2018(1):23-31.
|
| [5] |
ZHU Y, RITTER S M, DIJKSTERHUIS A J. Creativity:intrapersonal and interpersonal selection of creative ideas[J]. The journal of creative behavior, 2020(3):626-635.
|
| [6] |
LI M G, KANKANHALLI A, KIM S H. Which ideas are more likely to be implemented in online user innovation com- munities? An empirical analysis[J]. Decision support systems, 2016,84:28-40.
|
| [7] |
RIETZSCHEL E F, NIJSTAD B A, STROEBE W. The selection of creative ideas after individual idea generation: choosing between creativity and impact[J]. British journal of psychology, 2010(1):47-68.
|
| [8] |
QIN M, LI S Q, CAI F T, et al. Where are your ideas going? Idea adoption in online user innovation communities[J]. European journal of innovation management, 2024(6):2122-2148.
|
| [9] |
BERETTA M. Idea selection in web-enabled ideation systems[J]. Journal of product innovation management, 2019 (1):5-23.
DOI
|
| [10] |
CHEN L, XU P, LIU D. Effect of crowd voting on participation in crowdsourcing contests[J]. Journal of management information systems, 2020(2):510-535.
|
| [11] |
BELL J J, PESCHER C, TELLIS G J, et al. Can AI help in ideation? A theory-based model for idea screening in crowdsourcing contests[J]. Marketing science, 2024(1):54-72.
|
| [12] |
WAHL J, FÜLLER J, HUTTER K. AI-assisted searching:through crowdsourced solution space[J]. Marketing review St. Gallen, 2022(6):30-38.
|
| [13] |
CUI Z J, KUMAR P M S, GONÇALVES D. Scoring vs. ranking:an experimental study of idea evaluation processes[J]. Production and operations management, 2019(1):176-188.
|
| [14] |
CHOU J-R. An ideation method for generating new product ideas using TRIZ,concept mapping,and fuzzy linguistic evaluation techniques[J]. Advanced engineering informatics, 2014(4):441-454.
|
| [15] |
LALICIC L, DICKINGER A. Harvesting tourists’ ideas through an idea contest[J]. International journal of contem- porary hospitality management, 2019(11):4380-4400.
|
| [16] |
JIAN L, YANG S, BA S L, et al. Managing the crowds:the effect of prize guarantees and in-process feedback on par- ticipation in crowdsourcing contests[J]. MIS quarterly, 2019(1):97-112.
|
| [17] |
ZHANG X, CHEN Q. Towards an understanding of the decision process of solvers’ participation in crowdsourcing contests for problem solving[J]. Behaviour & information technology, 2022(12):2635-2653.
|
| [18] |
POETZ M K, SCHREIER M. The value of crowdsourcing:can users really compete with professionals in generating new product ideas?[J]. Journal of product innovation management, 2012(2):245-256.
|
| [19] |
MAGNUSSON P R, WÄSTLUND E, NETZ J. Exploring users’ appropriateness as a proxy for experts when screening new product/service ideas[J]. Journal of product innovation management, 2016(1):4-18.
|
| [20] |
JUST J, THOMAS S, JOHANN F, et al. AI-based novelty detection in crowdsourced idea spaces[J]. Innovation, 2023 (3):359-386.
|
| [21] |
LIU Q, DU Q Z, HONG Y L, et al. User idea implementation in open innovation communities:evidence from a new product development crowdsourcing community[J]. Information systems journal, 2020(5):899-927.
|
| [22] |
ZHOU L X, ZHANG Z Y, ZHAO L J, et al. How user personality and information characteristics influence the cre-ative information quality on open innovation platforms:an elaboration likelihood model[J]. Kybernetes, 2022(7): 2305-2325.
|
| [23] |
ZENG Q F, ZHANG L L, GUO Q, et al. Factors influencing user-idea selection in open innovation communities[J]. International journal of electronic commerce, 2022(4):415-440.
|
| [24] |
HOORNAERT S, BALLINGS M, MALTHOUSE E C, et al. Identifying new product ideas:waiting for the wisdom of the crowd or screening ideas in real time[J]. Journal of product innovation management, 2017(5):580-597.
|
| [25] |
CHAN K W, LI S Y, ZHU J J. Good to be novel? Understanding how idea feasibility affects idea adoption decision making in crowdsourcing[J]. Journal of interactive marketing, 2018(1):52-68.
|
| [26] |
LIN J, WANG C, ZHOU L X, et al. Converting consumer-generated content into an innovation resource:a user ideas processing framework in online user innovation communities[J]. Technological forecasting and social change, 2022, 174:121266.
|
| [27] |
ZHAO D, LI X Y, MA H D. Budget-Feasible online incentive mechanisms for crowdsourcing tasks truthfully[J]. IEEE-ACM transactions on networking, 2016(2):647-661.
|
| [28] |
SCHEMMANN B, HERRMANN A M, CHAPPIN M M H, et al. Crowdsourcing ideas:involving ordinary users in the ideation phase of new product development[J]. Research policy, 2016(6):1145-1154.
|
| [29] |
BANKEN V, ILMER Q, SEEBER I, et al. A method for smart idea allocation in crowd-based idea selection[J]. Deci- sion support systems, 2019,124:113072.
|
| [30] |
DEAN D L, HENDER J M, RODGERS T L, et al. Identifying quality,novel,and creative ideas:constructs and scales for idea evaluation[J]. Journal of the association for information systems, 2006(10):646-698.
|
| [31] |
KRISTENSSON P, GUSTAFSSON A, ARCHER T. Harnessing the creative potential among users[J]. Journal of pro- duct innovation management, 2004(1):4-14.
|
| [32] |
TOUBIA O, NETZER O. Idea generation,creativity,and prototypicality[J]. Marketing science, 2017(1):1-20.
|
| [33] |
CUI Z J, BARABOSHKIN V, GONÇALVES D. Selecting-the-best vs. eliminating-the-worst:an experimental inves- tigation of idea evaluation processes under cognitive bias conditions[J]. IEEE transactions on engineering manage-ment, 2024,71:14775-14788.
|
| [34] |
ZHANG K, ZHOU Y, CHEN Z, et al. Incorporating biterm correlation knowledge into topic modeling for short texts[J]. Computer journal, 2022(3):537-553.
|
| [35] |
HEINRICH G. Parameter estimation for text analysis[R]. Technical note,darmstadt, Germany,2009:1-31.
|
| [36] |
PRINCIPE V A, VALE R G D S, DE CASTRO J B P, et al. A computational literature review of football performance analysis through probabilistic topic modeling[J]. Artificial intelligence review, 2022(2):1351-1371.
|
| [37] |
RAHMAN Z, HUSSAIN A, SHAH H, et al. Urdu news clustering using K-mean algorithm on the basis of jaccard co- efficient and dice coefficient similarity[J]. Advances in distributed computing and artificial intelligence journal, 2021 (4):381-399.
|
| [38] |
方旺盛, 杨庚, 胡中栋. 杰卡德系数差分误差跳距修正的DV-hop改进算法[J]. 计算机工程与应用, 2018(23): 57-63.
DOI
|
| [39] |
姚晓磊, 鱼京善, 孙文超. 基于累积分布函数匹配的多源遥感土壤水分数据连续融合算法[J]. 农业工程学报, 2019(1):131-137.
|
| [40] |
金堃, 于柯远, 凌青, 等. 基于K-S检验的MIMO-STBC盲识别技术[J]. 计算机仿真, 2022(4):124-128+222.
|
| [41] |
郑震, 严迎建, 蔡爵嵩, 等. 基于双样本KS检验的非特定TVLA能量泄漏评估方法[J/OL]. 通信学报.https://kns.cnki.net/kcms2/detail/11.2102.TN.20230523.1603.012.html.
|